
Towards Evaluating the Robustness
of Neural Networks

Nicholas Carlini David Wagner

University of California, Berkeley

ABSTRACT

Neural networks provide state-of-the-art results for most

machine learning tasks. Unfortunately, neural networks are

vulnerable to adversarial examples: given an input x and any

target classification t, it is possible to find a new input x′

that is similar to x but classified as t. This makes it difficult

to apply neural networks in security-critical areas. Defensive

distillation is a recently proposed approach that can take an

arbitrary neural network, and increase its robustness, reducing

the success rate of current attacks’ ability to find adversarial

examples from 95% to 0.5%.

In this paper, we demonstrate that defensive distillation does

not significantly increase the robustness of neural networks

by introducing three new attack algorithms that are successful

on both distilled and undistilled neural networks with 100%
probability. Our attacks are tailored to three distance metrics

used previously in the literature, and when compared to pre-

vious adversarial example generation algorithms, our attacks

are often much more effective (and never worse). Furthermore,

we propose using high-confidence adversarial examples in

a simple transferability test we show can also be used to

break defensive distillation. We hope our attacks will be used

as a benchmark in future defense attempts to create neural

networks that resist adversarial examples.

I. INTRODUCTION

Deep neural networks have become increasingly effective

at many difficult machine-learning tasks. In the image recog-

nition domain, they are able to recognize images with near-

human accuracy [27], [25]. They are also used for speech

recognition [18], natural language processing [1], and playing

games [43], [32].

However, researchers have discovered that existing neural

networks are vulnerable to attack. Szegedy et al. [46] first

noticed the existence of adversarial examples in the image

classification domain: it is possible to transform an image by

a small amount and thereby change how the image is classified.

Often, the total amount of change required can be so small as

to be undetectable.

The degree to which attackers can find adversarial examples

limits the domains in which neural networks can be used.

For example, if we use neural networks in self-driving cars,

adversarial examples could allow an attacker to cause the car

to take unwanted actions.

The existence of adversarial examples has inspired research

on how to harden neural networks against these kinds of

Original Adversarial Original Adversarial

Fig. 1. An illustration of our attacks on a defensively distilled network.
The leftmost column contains the starting image. The next three columns
show adversarial examples generated by our L2, L∞, and L0 algorithms,
respectively. All images start out classified correctly with label l, and the three
misclassified instances share the same misclassified label of l+1 (mod 10).
Images were chosen as the first of their class from the test set.

attacks. Many early attempts to secure neural networks failed

or provided only marginal robustness improvements [15], [2],

[20], [42].

Defensive distillation [39] is one such recent defense pro-

posed for hardening neural networks against adversarial exam-

ples. Initial analysis proved to be very promising: defensive

distillation defeats existing attack algorithms and reduces their

success probability from 95% to 0.5%. Defensive distillation

can be applied to any feed-forward neural network and only

requires a single re-training step, and is currently one of

the only defenses giving strong security guarantees against

adversarial examples.

In general, there are two different approaches one can take

to evaluate the robustness of a neural network: attempt to prove

a lower bound, or construct attacks that demonstrate an upper

bound. The former approach, while sound, is substantially

more difficult to implement in practice, and all attempts have

required approximations [2], [21]. On the other hand, if the

2017 IEEE Symposium on Security and Privacy

© 2017, Nicholas Carlini. Under license to IEEE.

DOI 10.1109/SP.2017.49

39

attacks used in the the latter approach are not sufficiently

strong and fail often, the upper bound may not be useful.

In this paper we create a set of attacks that can be used

to construct an upper bound on the robustness of neural

networks. As a case study, we use these attacks to demon-

strate that defensive distillation does not actually eliminate

adversarial examples. We construct three new attacks (under

three previously used distance metrics: L0, L2, and L∞) that

succeed in finding adversarial examples for 100% of images

on defensively distilled networks. While defensive distillation

stops previously published attacks, it cannot resist the more

powerful attack techniques we introduce in this paper.

This case study illustrates the general need for better

techniques to evaluate the robustness of neural networks:

while distillation was shown to be secure against the current

state-of-the-art attacks, it fails against our stronger attacks.

Furthermore, when comparing our attacks against the current

state-of-the-art on standard unsecured models, our methods

generate adversarial examples with less total distortion in

every case. We suggest that our attacks are a better baseline

for evaluating candidate defenses: before placing any faith in a

new possible defense, we suggest that designers at least check

whether it can resist our attacks.

We additionally propose using high-confidence adversarial

examples to evaluate the robustness of defenses. Transfer-

ability [46], [11] is the well-known property that adversarial

examples on one model are often also adversarial on another

model. We demonstrate that adversarial examples from our

attacks are transferable from the unsecured model to the

defensively distilled (secured) model. In general, we argue

that any defense must demonstrate it is able to break the

transferability property.

We evaluate our attacks on three standard datasets: MNIST

[28], a digit-recognition task (0-9); CIFAR-10 [24], a small-

image recognition task, also with 10 classes; and ImageNet

[9], a large-image recognition task with 1000 classes.

Figure 1 shows examples of adversarial examples our tech-

niques generate on defensively distilled networks trained on

the MNIST and CIFAR datasets.

In one extreme example for the ImageNet classification task,

we can cause the Inception v3 [45] network to incorrectly

classify images by changing only the lowest order bit of each

pixel. Such changes are impossible to detect visually.

To enable others to more easily use our work to evaluate

the robustness of other defenses, all of our adversarial example

generation algorithms (along with code to train the models we

use, to reproduce the results we present) are available online

at http://nicholas.carlini.com/code/nn robust attacks.

This paper makes the following contributions:

• We introduce three new attacks for the L0, L2, and L∞
distance metrics. Our attacks are significantly more effec-

tive than previous approaches. Our L0 attack is the first

published attack that can cause targeted misclassification

on the ImageNet dataset.

• We apply these attacks to defensive distillation and dis-

cover that distillation provides little security benefit over

un-distilled networks.

• We propose using high-confidence adversarial examples

in a simple transferability test to evaluate defenses, and

show this test breaks defensive distillation.

• We systematically evaluate the choice of the objective

function for finding adversarial examples, and show that

the choice can dramatically impact the efficacy of an

attack.

II. BACKGROUND

A. Threat Model

Machine learning is being used in an increasing array of

settings to make potentially security critical decisions: self-

driving cars [3], [4], drones [10], robots [33], [22], anomaly

detection [6], malware classification [8], [40], [48], speech

recognition and recognition of voice commands [17], [13],

NLP [1], and many more. Consequently, understanding the

security properties of deep learning has become a crucial

question in this area. The extent to which we can construct

adversarial examples influences the settings in which we may

want to (or not want to) use neural networks.

In the speech recognition domain, recent work has shown

[5] it is possible to generate audio that sounds like speech to

machine learning algorithms but not to humans. This can be

used to control user’s devices without their knowledge. For

example, by playing a video with a hidden voice command,

it may be possible to cause a smart phone to visit a malicious

webpage to cause a drive-by download. This work focused

on conventional techniques (Gaussian Mixture Models and

Hidden Markov Models), but as speech recognition is increas-

ingly using neural networks, the study of adversarial examples

becomes relevant in this domain. 1

In the space of malware classification, the existence of

adversarial examples not only limits their potential application

settings, but entirely defeats its purpose: an adversary who is

able to make only slight modifications to a malware file that

cause it to remain malware, but become classified as benign,

has entirely defeated the malware classifier [8], [14].

Turning back to the threat to self-driving cars introduced

earlier, this is not an unrealistic attack: it has been shown that

adversarial examples are possible in the physical world [26]

after taking pictures of them.

The key question then becomes exactly how much distortion

we must add to cause the classification to change. In each

domain, the distance metric that we must use is different. In

the space of images, which we focus on in this paper, we

rely on previous work that suggests that various Lp norms are

reasonable approximations of human perceptual distance (see

Section II-D for more information).

We assume in this paper that the adversary has complete

access to a neural network, including the architecture and all

paramaters, and can use this in a white-box manner. This is a

conservative and realistic assumption: prior work has shown it

1Strictly speaking, hidden voice commands are not adversarial examples
because they are not similar to the original input [5].

40

is possible to train a substitute model given black-box access

to a target model, and by attacking the substitute model, we

can then transfer these attacks to the target model. [37]

Given these threats, there have been various attempts [15],

[2], [20], [42], [39] at constructing defenses that increase the

robustness of a neural network, defined as a measure of how

easy it is to find adversarial examples that are close to their

original input.

In this paper we study one of these, distillation as a defense
[39], that hopes to secure an arbitrary neural network. This

type of defensive distillation was shown to make generating

adversarial examples nearly impossible for existing attack

techniques [39]. We find that although the current state-of-the-

art fails to find adversarial examples for defensively distilled

networks, the stronger attacks we develop in this paper are
able to construct adversarial examples.

B. Neural Networks and Notation

A neural network is a function F (x) = y that accepts an

input x ∈ R
n and produces an output y ∈ R

m. The model F
also implicitly depends on some model parameters θ; in our

work the model is fixed, so for convenience we don’t show

the dependence on θ.

In this paper we focus on neural networks used as an m-

class classifier. The output of the network is computed using

the softmax function, which ensures that the output vector y
satisfies 0 ≤ yi ≤ 1 and y1+· · ·+ym = 1. The output vector y
is thus treated as a probability distribution, i.e., yi is treated as

the probability that input x has class i. The classifier assigns

the label C(x) = argmaxi F (x)i to the input x. Let C∗(x)
be the correct label of x. The inputs to the softmax function

are called logits.

We use the notation from Papernot et al. [39]: define F
to be the full neural network including the softmax function,

Z(x) = z to be the output of all layers except the softmax (so

z are the logits), and

F (x) = softmax(Z(x)) = y.

A neural network typically 2 consists of layers

F = softmax ◦ Fn ◦ Fn−1 ◦ · · · ◦ F1

where

Fi(x) = σ(θi · x) + θ̂i

for some non-linear activation function σ, some matrix θi of

model weights, and some vector θ̂i of model biases. Together

θ and θ̂ make up the model parameters. Common choices of σ
are tanh [31], sigmoid, ReLU [29], or ELU [7]. In this paper

we focus primarily on networks that use a ReLU activation

function, as it currently is the most widely used activation

function [45], [44], [31], [39].

We use image classification as our primary evaluation

domain. An h×w-pixel grey-scale image is a two-dimensional

2Most simple networks have this simple linear structure, however other
more sophisticated networks have more complicated structures (e.g., ResNet
[16] and Inception [45]). The network architecture does not impact our attacks.

vector x ∈ R
hw, where xi denotes the intensity of pixel i

and is scaled to be in the range [0, 1]. A color RGB image

is a three-dimensional vector x ∈ R
3hw. We do not convert

RGB images to HSV, HSL, or other cylindrical coordinate

representations of color images: the neural networks act on

raw pixel values.

C. Adversarial Examples

Szegedy et al. [46] first pointed out the existence of

adversarial examples: given a valid input x and a target

t �= C∗(x), it is often possible to find a similar input x′

such that C(x′) = t yet x, x′ are close according to some

distance metric. An example x′ with this property is known

as a targeted adversarial example.

A less powerful attack also discussed in the literature

instead asks for untargeted adversarial examples: instead of

classifying x as a given target class, we only search for an

input x′ so that C(x′) �= C∗(x) and x, x′ are close. Untargeted

attacks are strictly less powerful than targeted attacks and we

do not consider them in this paper. 3

Instead, we consider three different approaches for how to

choose the target class, in a targeted attack:

• Average Case: select the target class uniformly at random
among the labels that are not the correct label.

• Best Case: perform the attack against all incorrect classes,

and report the target class that was least difficult to attack.

• Worst Case: perform the attack against all incorrect

classes, and report the target class that was most difficult
to attack.

In all of our evaluations we perform all three types of

attacks: best-case, average-case, and worst-case. Notice that

if a classifier is only accurate 80% of the time, then the best

case attack will require a change of 0 in 20% of cases.

On ImageNet, we approximate the best-case and worst-case

attack by sampling 100 random target classes out of the 1,000

possible for efficiency reasons.

D. Distance Metrics

In our definition of adversarial examples, we require use

of a distance metric to quantify similarity. There are three

widely-used distance metrics in the literature for generating

adversarial examples, all of which are Lp norms.

The Lp distance is written ‖x − x′‖p, where the p-norm

‖ · ‖p is defined as

‖v‖p =

(
n∑

i=1

|vi|p
) 1

p

.

In more detail:

3An untargeted attack is simply a more efficient (and often less accurate)
method of running a targeted attack for each target and taking the closest.
In this paper we focus on identifying the most accurate attacks, and do not
consider untargeted attacks.

41

1) L0 distance measures the number of coordinates i such

that xi �= x′i. Thus, the L0 distance corresponds to the

number of pixels that have been altered in an image.4

Papernot et al. argue for the use of the L0 distance

metric, and it is the primary distance metric under which

defensive distillation’s security is argued [39].

2) L2 distance measures the standard Euclidean (root-

mean-square) distance between x and x′. The L2 dis-

tance can remain small when there are many small

changes to many pixels.

This distance metric was used in the initial adversarial

example work [46].

3) L∞ distance measures the maximum change to any of

the coordinates:

‖x− x′‖∞ = max(|x1 − x′1|, . . . , |xn − x′n|).
For images, we can imagine there is a maximum budget,

and each pixel is allowed to be changed by up to this

limit, with no limit on the number of pixels that are

modified.

Goodfellow et al. argue that L∞ is the optimal distance

metric to use [47] and in a follow-up paper Papernot et
al. argue distillation is secure under this distance metric

[36].

No distance metric is a perfect measure of human perceptual

similarity, and we pass no judgement on exactly which dis-

tance metric is optimal. We believe constructing and evaluating

a good distance metric is an important research question we

leave to future work.
However, since most existing work has picked one of these

three distance metrics, and since defensive distillation argued

security against two of these, we too use these distance metrics

and construct attacks that perform superior to the state-of-the-

art for each of these distance metrics.
When reporting all numbers in this paper, we report using

the distance metric as defined above, on the range [0, 1]. (That

is, changing a pixel in a greyscale image from full-on to full-

off will result in L2 change of 1.0 and a L∞ change of 1.0,

not 255.)

E. Defensive Distillation
We briefly provide a high-level overview of defensive distil-

lation. We provide a complete description later in Section VIII.
To defensively distill a neural network, begin by first

training a network with identical architecture on the training

data in a standard manner. When we compute the softmax

while training this network, replace it with a more-smooth

version of the softmax (by dividing the logits by some constant

T). At the end of training, generate the soft training labels by

evaluating this network on each of the training instances and

taking the output labels of the network.

4In RGB images, there are three channels that each can change. We count
the number of pixels that are different, where two pixels are considered
different if any of the three colors are different. We do not consider a
distance metric where an attacker can change one color plane but not another
meaningful. We relax this requirement when comparing to other L0 attacks
that do not make this assumption to provide for a fair comparison.

Then, throw out the first network and use only the soft

training labels. With those, train a second network where

instead of training it on the original training labels, use the

soft labels. This trains the second model to behave like the first

model, and the soft labels convey additional hidden knowledge

learned by the first model.

The key insight here is that by training to match the first

network, we will hopefully avoid over-fitting against any of the

training data. If the reason that neural networks exist is because

neural networks are highly non-linear and have “blind spots”

[46] where adversarial examples lie, then preventing this type

of over-fitting might remove those blind spots.

In fact, as we will see later, defensive distillation does not

remove adversarial examples. One potential reason this may

occur is that others [11] have argued the reason adversarial

examples exist is not due to blind spots in a highly non-linear

neural network, but due only to the locally-linear nature of

neural networks. This so-called linearity hypothesis appears

to be true [47], and under this explanation it is perhaps less

surprising that distillation does not increase the robustness of

neural networks.

F. Organization

The remainder of this paper is structured as follows. In

the next section, we survey existing attacks that have been

proposed in the literature for generating adversarial examples,

for the L2, L∞, and L0 distance metrics. We then describe

our attack algorithms that target the same three distance

metrics and provide superior results to the prior work. Having

developed these attacks, we review defensive distillation in

more detail and discuss why the existing attacks fail to find ad-

versarial examples on defensively distilled networks. Finally,

we attack defensive distillation with our new algorithms and

show that it provides only limited value.

III. ATTACK ALGORITHMS

A. L-BFGS

Szegedy et al. [46] generated adversarial examples using

box-constrained L-BFGS. Given an image x, their method

finds a different image x′ that is similar to x under L2 distance,

yet is labeled differently by the classifier. They model the

problem as a constrained minimization problem:

minimize ‖x− x′‖22
such that C(x′) = l

x′ ∈ [0, 1]n

This problem can be very difficult to solve, however, so

Szegedy et al. instead solve the following problem:

minimize c · ‖x− x′‖22 + lossF,l(x
′)

such that x′ ∈ [0, 1]n

where lossF,l is a function mapping an image to a positive real

number. One common loss function to use is cross-entropy.

Line search is performed to find the constant c > 0 that yields

an adversarial example of minimum distance: in other words,

42

we repeatedly solve this optimization problem for multiple

values of c, adaptively updating c using bisection search or

any other method for one-dimensional optimization.

B. Fast Gradient Sign

The fast gradient sign [11] method has two key differences

from the L-BFGS method: first, it is optimized for the L∞
distance metric, and second, it is designed primarily to be fast

instead of producing very close adversarial examples. Given

an image x the fast gradient sign method sets

x′ = x− ε · sign(∇lossF,t(x)),

where ε is chosen to be sufficiently small so as to be

undetectable, and t is the target label. Intuitively, for each

pixel, the fast gradient sign method uses the gradient of

the loss function to determine in which direction the pixel’s

intensity should be changed (whether it should be increased

or decreased) to minimize the loss function; then, it shifts all

pixels simultaneously.

It is important to note that the fast gradient sign attack was

designed to be fast, rather than optimal. It is not meant to

produce the minimal adversarial perturbations.

Iterative Gradient Sign: Kurakin et al. introduce a simple

refinement of the fast gradient sign method [26] where instead

of taking a single step of size ε in the direction of the gradient-

sign, multiple smaller steps α are taken, and the result is

clipped by the same ε. Specifically, begin by setting

x′0 = 0

and then on each iteration

x′i = x′i−1 − clipε(α · sign(∇lossF,t(x
′
i−1)))

Iterative gradient sign was found to produce superior results

to fast gradient sign [26].

C. JSMA

Papernot et al. introduced an attack optimized under L0

distance [38] known as the Jacobian-based Saliency Map

Attack (JSMA). We give a brief summary of their attack

algorithm; for a complete description and motivation, we

encourage the reader to read their original paper [38].

At a high level, the attack is a greedy algorithm that

picks pixels to modify one at a time, increasing the target

classification on each iteration. They use the gradient ∇Z(x)l
to compute a saliency map, which models the impact each

pixel has on the resulting classification. A large value indicates

that changing it will significantly increase the likelihood of

the model labeling the image as the target class l. Given the

saliency map, it picks the most important pixel and modify

it to increase the likelihood of class l. This is repeated until

either more than a set threshold of pixels are modified which

makes the attack detectable, or it succeeds in changing the

classification.

In more detail, we begin by defining the saliency map in

terms of a pair of pixels p, q. Define

αpq =
∑

i∈{p,q}

∂Z(x)t
∂xi

βpq =

⎛
⎝ ∑

i∈{p,q}

∑
j

∂Z(x)j
∂xi

⎞
⎠− αpq

so that αpq represents how much changing both pixels p and

q will change the target classification, and βpq represents how

much changing p and q will change all other outputs. Then

the algorithm picks

(p∗, q∗) = argmax
(p,q)

(−αpq · βpq) · (αpq > 0) · (βpq < 0)

so that αpq > 0 (the target class is more likely), βpq < 0 (the

other classes become less likely), and −αpq · βpq is largest.

Notice that JSMA uses the output of the second-to-last layer

Z, the logits, in the calculation of the gradient: the output of

the softmax F is not used. We refer to this as the JSMA-Z
attack.

However, when the authors apply this attack to their defen-

sively distilled networks, they modify the attack so it uses F
instead of Z. In other words, their computation uses the output

of the softmax (F) instead of the logits (Z). We refer to this

modification as the JSMA-F attack.5

When an image has multiple color channels (e.g., RGB),

this attack considers the L0 difference to be 1 for each color

channel changed independently (so that if all three color

channels of one pixel change change, the L0 norm would be

3). While we do not believe this is a meaningful threat model,

when comparing to this attack, we evaluate under both models.

D. Deepfool

Deepfool [34] is an untargeted attack technique optimized

for the L2 distance metric. It is efficient and produces closer

adversarial examples than the L-BFGS approach discussed

earlier.

The authors construct Deepfool by imagining that the neural

networks are totally linear, with a hyperplane separating each

class from another. From this, they analytically derive the

optimal solution to this simplified problem, and construct the

adversarial example.

Then, since neural networks are not actually linear, they take

a step towards that solution, and repeat the process a second

time. The search terminates when a true adversarial example

is found.

The exact formulation used is rather sophisticated; inter-

ested readers should refer to the original work [34].

IV. EXPERIMENTAL SETUP

Before we develop our attack algorithms to break distilla-

tion, we describe how we train the models on which we will

evaluate our attacks.

5We verified this via personal communication with the authors.

43

Layer Type MNIST Model CIFAR Model

Convolution + ReLU 3×3×32 3×3×64
Convolution + ReLU 3×3×32 3×3×64
Max Pooling 2×2 2×2
Convolution + ReLU 3×3×64 3×3×128
Convolution + ReLU 3×3×64 3×3×128
Max Pooling 2×2 2×2
Fully Connected + ReLU 200 256
Fully Connected + ReLU 200 256
Softmax 10 10

TABLE I
MODEL ARCHITECTURES FOR THE MNIST AND CIFAR MODELS. THIS

ARCHITECTURE IS IDENTICAL TO THAT OF THE ORIGINAL DEFENSIVE

DISTILLATION WORK. [39]

Parameter MNIST Model CIFAR Model

Learning Rate 0.1 0.01 (decay 0.5)
Momentum 0.9 0.9 (decay 0.5)
Delay Rate - 10 epochs
Dropout 0.5 0.5
Batch Size 128 128
Epochs 50 50

TABLE II
MODEL PARAMETERS FOR THE MNIST AND CIFAR MODELS. THESE

PARAMETERS ARE IDENTICAL TO THAT OF THE ORIGINAL DEFENSIVE

DISTILLATION WORK. [39]

We train two networks for the MNIST [28] and CIFAR-10

[24] classification tasks, and use one pre-trained network for

the ImageNet classification task [41]. Our models and training

approaches are identical to those presented in [39]. We achieve

99.5% accuracy on MNIST, comparable to the state of the

art. On CIFAR-10, we achieve 80% accuracy, identical to the

accuracy given in the distillation work. 6

MNIST and CIFAR-10. The model architecture is given in

Table I and the hyperparameters selected in Table II. We use

a momentum-based SGD optimizer during training.

The CIFAR-10 model significantly overfits the training data

even with dropout: we obtain a final training cross-entropy

loss of 0.05 with accuracy 98%, compared to a validation

loss of 1.2 with validation accuracy 80%. We do not alter

the network by performing image augmentation or adding

additional dropout as that was not done in [39].

ImageNet. Along with considering MNIST and CIFAR,

which are both relatively small datasets, we also consider

the ImageNet dataset. Instead of training our own ImageNet

model, we use the pre-trained Inception v3 network [45],

which achieves 96% top-5 accuracy (that is, the probability

that the correct class is one of the five most likely as reported

by the network is 96%). Inception takes images as 299×299×3
dimensional vectors.

6This is compared to the state-of-the-art result of 95% [12], [44], [31].
However, in order to provide the most accurate comparison to the original
work, we feel it is important to reproduce their model architectures.

V. OUR APPROACH

We now turn to our approach for constructing adversarial

examples. To begin, we rely on the initial formulation of

adversarial examples [46] and formally define the problem of

finding an adversarial instance for an image x as follows:

minimize D(x, x+ δ)

such that C(x+ δ) = t

x+ δ ∈ [0, 1]n

where x is fixed, and the goal is to find δ that minimizes

D(x, x+δ). That is, we want to find some small change δ that

we can make to an image x that will change its classification,

but so that the result is still a valid image. Here D is some

distance metric; for us, it will be either L0, L2, or L∞ as

discussed earlier.
We solve this problem by formulating it as an appropriate

optimization instance that can be solved by existing optimiza-

tion algorithms. There are many possible ways to do this;

we explore the space of formulations and empirically identify

which ones lead to the most effective attacks.

A. Objective Function
The above formulation is difficult for existing algorithms

to solve directly, as the constraint C(x + δ) = t is highly

non-linear. Therefore, we express it in a different form that is

better suited for optimization. We define an objective function

f such that C(x+ δ) = t if and only if f(x+ δ) ≤ 0. There

are many possible choices for f :

f1(x
′) = −lossF,t(x

′) + 1

f2(x
′) = (max

i�=t
(F (x′)i)− F (x′)t)+

f3(x
′) = softplus(max

i�=t
(F (x′)i)− F (x′)t)− log(2)

f4(x
′) = (0.5− F (x′)t)+

f5(x
′) = − log(2F (x′)t − 2)

f6(x
′) = (max

i�=t
(Z(x′)i)− Z(x′)t)+

f7(x
′) = softplus(max

i�=t
(Z(x′)i)− Z(x′)t)− log(2)

where s is the correct classification, (e)+ is short-hand for

max(e, 0), softplus(x) = log(1 + exp(x)), and lossF,s(x) is

the cross entropy loss for x.
Notice that we have adjusted some of the above formula by

adding a constant; we have done this only so that the function

respects our definition. This does not impact the final result,

as it just scales the minimization function.
Now, instead of formulating the problem as

minimize D(x, x+ δ)

such that f(x+ δ) ≤ 0

x+ δ ∈ [0, 1]n

we use the alternative formulation:

minimize D(x, x+ δ) + c · f(x+ δ)

such that x+ δ ∈ [0, 1]n

44

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
uc

ce
ss

 P
ro

ba
bi

lit
y

0
2

4
6

8
10

M
ea

n
A

dv
er

sa
ria

l E
xa

m
pl

e
D

is
ta

nc
e

1e−02 1e−01 1e+00 1e+01 1e+02
Constant c used

Fig. 2. Sensitivity on the constant c. We plot the L2 distance of the adversarial
example computed by gradient descent as a function of c, for objective
function f6. When c < .1, the attack rarely succeeds. After c > 1, the
attack becomes less effective, but always succeeds.

where c > 0 is a suitably chosen constant. These two are

equivalent, in the sense that there exists c > 0 such that the

optimal solution to the latter matches the optimal solution to

the former. After instantiating the distance metric D with an

lp norm, the problem becomes: given x, find δ that solves

minimize ‖δ‖p + c · f(x+ δ)

such that x+ δ ∈ [0, 1]n

Choosing the constant c.
Empirically, we have found that often the best way to choose

c is to use the smallest value of c for which the resulting

solution x∗ has f(x∗) ≤ 0. This causes gradient descent to

minimize both of the terms simultaneously instead of picking

only one to optimize over first.

We verify this by running our f6 formulation (which we

found most effective) for values of c spaced uniformly (on a

log scale) from c = 0.01 to c = 100 on the MNIST dataset.

We plot this line in Figure 2. 7

Further, we have found that if choose the smallest c such

that f(x∗) ≤ 0, the solution is within 5% of optimal 70% of

the time, and within 30% of optimal 98% of the time, where

“optimal” refers to the solution found using the best value of

c. Therefore, in our implementations we use modified binary

search to choose c.

7The corresponding figures for other objective functions are similar; we
omit them for brevity.

B. Box constraints

To ensure the modification yields a valid image, we have a

constraint on δ: we must have 0 ≤ xi+ δi ≤ 1 for all i. In the

optimization literature, this is known as a “box constraint.”

Previous work uses a particular optimization algorithm, L-

BFGS-B, which supports box constraints natively.

We investigate three different methods of approaching this

problem.

1) Projected gradient descent performs one step of standard

gradient descent, and then clips all the coordinates to be

within the box.

This approach can work poorly for gradient descent

approaches that have a complicated update step (for

example, those with momentum): when we clip the

actual xi, we unexpectedly change the input to the next

iteration of the algorithm.

2) Clipped gradient descent does not clip xi on each

iteration; rather, it incorporates the clipping into the

objective function to be minimized. In other words, we

replace f(x + δ) with f(min(max(x + δ, 0), 1)), with

the min and max taken component-wise.

While solving the main issue with projected gradient de-

scent, clipping introduces a new problem: the algorithm

can get stuck in a flat spot where it has increased some

component xi to be substantially larger than the maxi-

mum allowed. When this happens, the partial derivative

becomes zero, so even if some improvement is possible

by later reducing xi, gradient descent has no way to

detect this.

3) Change of variables introduces a new variable w and

instead of optimizing over the variable δ defined above,

we apply a change-of-variables and optimize over w,

setting

δi =
1

2
(tanh(wi) + 1)− xi.

Since −1 ≤ tanh(wi) ≤ 1, it follows that 0 ≤ xi+δi ≤
1, so the solution will automatically be valid. 8

We can think of this approach as a smoothing of clipped

gradient descent that eliminates the problem of getting

stuck in extreme regions.

These methods allow us to use other optimization algo-

rithms that don’t natively support box constraints. We use the

Adam [23] optimizer almost exclusively, as we have found it to

be the most effective at quickly finding adversarial examples.

We tried three solvers — standard gradient descent, gradient

descent with momentum, and Adam — and all three produced

identical-quality solutions. However, Adam converges substan-

tially more quickly than the others.

C. Evaluation of approaches

For each possible objective function f(·) and method to

enforce the box constraint, we evaluate the quality of the

adversarial examples found.

8Instead of scaling by 1
2

we scale by 1
2
+ ε to avoid dividing by zero.

45

Best Case Average Case Worst Case
Change of Clipped Projected Change of Clipped Projected Change of Clipped Projected
Variable Descent Descent Variable Descent Descent Variable Descent Descent

mean prob mean prob mean prob mean prob mean prob mean prob mean prob mean prob mean prob

f1 2.46 100% 2.93 100% 2.31 100% 4.35 100% 5.21 100% 4.11 100% 7.76 100% 9.48 100% 7.37 100%
f2 4.55 80% 3.97 83% 3.49 83% 3.22 44% 8.99 63% 15.06 74% 2.93 18% 10.22 40% 18.90 53%
f3 4.54 77% 4.07 81% 3.76 82% 3.47 44% 9.55 63% 15.84 74% 3.09 17% 11.91 41% 24.01 59%
f4 5.01 86% 6.52 100% 7.53 100% 4.03 55% 7.49 71% 7.60 71% 3.55 24% 4.25 35% 4.10 35%
f5 1.97 100% 2.20 100% 1.94 100% 3.58 100% 4.20 100% 3.47 100% 6.42 100% 7.86 100% 6.12 100%
f6 1.94 100% 2.18 100% 1.95 100% 3.47 100% 4.11 100% 3.41 100% 6.03 100% 7.50 100% 5.89 100%
f7 1.96 100% 2.21 100% 1.94 100% 3.53 100% 4.14 100% 3.43 100% 6.20 100% 7.57 100% 5.94 100%

TABLE III
EVALUATION OF ALL COMBINATIONS OF ONE OF THE SEVEN POSSIBLE OBJECTIVE FUNCTIONS WITH ONE OF THE THREE BOX CONSTRAINT ENCODINGS.

WE SHOW THE AVERAGE L2 DISTORTION, THE STANDARD DEVIATION, AND THE SUCCESS PROBABILITY (FRACTION OF INSTANCES FOR WHICH AN

ADVERSARIAL EXAMPLE CAN BE FOUND). EVALUATED ON 1000 RANDOM INSTANCES. WHEN THE SUCCESS IS NOT 100%, MEAN IS FOR SUCCESSFUL

ATTACKS ONLY.

To choose the optimal c, we perform 20 iterations of binary

search over c. For each selected value of c, we run 10, 000
iterations of gradient descent with the Adam optimizer. 9

The results of this analysis are in Table III. We evaluate

the quality of the adversarial examples found on the MNIST

and CIFAR datasets. The relative ordering of each objective

function is identical between the two datasets, so for brevity

we report only results for MNIST.

There is a factor of three difference in quality between the

best objective function and the worst. The choice of method

for handling box constraints does not impact the quality of

results as significantly for the best minimization functions.

In fact, the worst performing objective function, cross

entropy loss, is the approach that was most suggested in the

literature previously [46], [42].

Why are some loss functions better than others? When c =
0, gradient descent will not make any move away from the

initial image. However, a large c often causes the initial steps

of gradient descent to perform in an overly-greedy manner,

only traveling in the direction which can most easily reduce

f and ignoring the D loss — thus causing gradient descent to

find sub-optimal solutions.

This means that for loss function f1 and f4, there is no

good constant c that is useful throughout the duration of

the gradient descent search. Since the constant c weights the

relative importance of the distance term and the loss term, in

order for a fixed constant c to be useful, the relative value of

these two terms should remain approximately equal. This is

not the case for these two loss functions.

To explain why this is the case, we will have to take a side

discussion to analyze how adversarial examples exist. Consider

a valid input x and an adversarial example x′ on a network.

What does it look like as we linearly interpolate from x to

x′? That is, let y = αx+(1−α)x′ for α ∈ [0, 1]. It turns out the

value of Z(·)t is mostly linear from the input to the adversarial

example, and therefore the F (·)t is a logistic. We verify this

fact empirically by constructing adversarial examples on the

9Adam converges to 95% of optimum within 1, 000 iterations 92% of the
time. For completeness we run it for 10, 000 iterations at each step.

first 1, 000 test images on both the MNIST and CIFAR dataset

with our approach, and find the Pearson correlation coefficient

r > .9.

Given this, consider loss function f4 (the argument for f1 is

similar). In order for the gradient descent attack to make any

change initially, the constant c will have to be large enough

that

ε < c(f1(x+ ε)− f1(x))

or, as ε→ 0,

1/c < |∇f1(x)|
implying that c must be larger than the inverse of the gradient

to make progress, but the gradient of f1 is identical to F (·)t
so will be tiny around the initial image, meaning c will have

to be extremely large.

However, as soon as we leave the immediate vicinity of

the initial image, the gradient of ∇f1(x + δ) increases at an

exponential rate, making the large constant c cause gradient

descent to perform in an overly greedy manner.

We verify all of this theory empirically. When we run our

attack trying constants chosen from 10−10 to 1010 the average

constant for loss function f4 was 106.

The average gradient of the loss function f1 around the valid

image is 2−20 but 2−1 at the closest adversarial example. This

means c is a million times larger than it has to be, causing

the loss function f4 and f1 to perform worse than any of the

others.

D. Discretization

We model pixel intensities as a (continuous) real number in

the range [0, 1]. However, in a valid image, each pixel intensity

must be a (discrete) integer in the range {0, 1, . . . , 255}. This

additional requirement is not captured in our formulation.

In practice, we ignore the integrality constraints, solve the

continuous optimization problem, and then round to the nearest

integer: the intensity of the ith pixel becomes 	255(xi + δi)
.
This rounding will slightly degrade the quality of the

adversarial example. If we need to restore the attack quality,

we perform greedy search on the lattice defined by the discrete

46

Target Classification (L2)

0 1 2 3 4 5 6 7 8 9
S

o
u

rc
e

C
la

ss
ifi

ca
ti

o
n

9
8

7
6

5
4

3
2

1
0

Fig. 3. Our L2 adversary applied to the MNIST dataset performing a targeted
attack for every source/target pair. Each digit is the first image in the dataset
with that label.

solutions by changing one pixel value at a time. This greedy

search never failed for any of our attacks.

Prior work has largely ignored the integrality constraints.10

For instance, when using the fast gradient sign attack with ε =
0.1 (i.e., changing pixel values by 10%), discretization rarely

affects the success rate of the attack. In contrast, in our work,

we are able to find attacks that make much smaller changes

to the images, so discretization effects cannot be ignored. We

take care to always generate valid images; when reporting the

success rate of our attacks, they always are for attacks that

include the discretization post-processing.

VI. OUR THREE ATTACKS

A. Our L2 Attack

Putting these ideas together, we obtain a method for finding

adversarial examples that will have low distortion in the L2

metric. Given x, we choose a target class t (such that we have

t �= C∗(x)) and then search for w that solves

minimize ‖1
2
(tanh(w) + 1)− x‖22 + c · f(1

2
(tanh(w) + 1)

with f defined as

f(x′) = max(max{Z(x′)i : i �= t} − Z(x′)t,−κ).
This f is based on the best objective function found earlier,

modified slightly so that we can control the confidence with

which the misclassification occurs by adjusting κ. The param-

eter κ encourages the solver to find an adversarial instance

x′ that will be classified as class t with high confidence. We

set κ = 0 for our attacks but we note here that a side benefit

10One exception: The JSMA attack [38] handles this by only setting the
output value to either 0 or 255.

Target Classification (L0)

0 1 2 3 4 5 6 7 8 9

S
o

u
rc

e
C

la
ss

ifi
ca

ti
o

n

9
8

7
6

5
4

3
2

1
0

Fig. 4. Our L0 adversary applied to the MNIST dataset performing a targeted
attack for every source/target pair. Each digit is the first image in the dataset
with that label.

of this formulation is it allows one to control for the desired

confidence. This is discussed further in Section VIII-D.

Figure 3 shows this attack applied to our MNIST model

for each source digit and target digit. Almost all attacks are

visually indistinguishable from the original digit.

A comparable figure (Figure 12) for CIFAR is in the ap-

pendix. No attack is visually distinguishable from the baseline

image.

Multiple starting-point gradient descent. The main problem

with gradient descent is that its greedy search is not guaranteed

to find the optimal solution and can become stuck in a local

minimum. To remedy this, we pick multiple random starting

points close to the original image and run gradient descent

from each of those points for a fixed number of iterations.

We randomly sample points uniformly from the ball of radius

r, where r is the closest adversarial example found so far.

Starting from multiple starting points reduces the likelihood

that gradient descent gets stuck in a bad local minimum.

B. Our L0 Attack

The L0 distance metric is non-differentiable and therefore

is ill-suited for standard gradient descent. Instead, we use an

iterative algorithm that, in each iteration, identifies some pixels

that don’t have much effect on the classifier output and then

fixes those pixels, so their value will never be changed. The

set of fixed pixels grows in each iteration until we have, by

process of elimination, identified a minimal (but possibly not

minimum) subset of pixels that can be modified to generate an

adversarial example. In each iteration, we use our L2 attack

to identify which pixels are unimportant.

In more detail, on each iteration, we call the L2 adversary,

restricted to only modify the pixels in the allowed set. Let

47

δ be the solution returned from the L2 adversary on input

image x, so that x+ δ is an adversarial example. We compute

g = ∇f(x + δ) (the gradient of the objective function,

evaluated at the adversarial instance). We then select the pixel

i = argmini gi · δi and fix i, i.e., remove i from the allowed

set.11 The intuition is that gi ·δi tells us how much reduction to

f(·) we obtain from the ith pixel of the image, when moving

from x to x + δ: gi tells us how much reduction in f we

obtain, per unit change to the ith pixel, and we multiply this

by how much the ith pixel has changed. This process repeats

until the L2 adversary fails to find an adversarial example.

There is one final detail required to achieve strong results:

choosing a constant c to use for the L2 adversary. To do this,

we initially set c to a very low value (e.g., 10−4). We then

run our L2 adversary at this c-value. If it fails, we double c
and try again, until it is successful. We abort the search if c
exceeds a fixed threshold (e.g., 1010).

JSMA grows a set — initially empty — of pixels that are

allowed to be changed and sets the pixels to maximize the total

loss. In contrast, our attack shrinks the set of pixels — initially

containing every pixel — that are allowed to be changed.

Our algorithm is significantly more effective than JSMA

(see Section VII for an evaluation). It is also efficient: we

introduce optimizations that make it about as fast as our L2

attack with a single starting point on MNIST and CIFAR; it is

substantially slower on ImageNet. Instead of starting gradient

descent in each iteration from the initial image, we start the

gradient descent from the solution found on the previous

iteration (“warm-start”). This dramatically reduces the number

of rounds of gradient descent needed during each iteration, as

the solution with k pixels held constant is often very similar

to the solution with k + 1 pixels held constant.

Figure 4 shows the L0 attack applied to one digit of each

source class, targeting each target class, on the MNIST dataset.

The attacks are visually noticeable, implying the L0 attack is

more difficult than L2. Perhaps the worst case is that of a 7

being made to classify as a 6; interestingly, this attack for L2

is one of the only visually distinguishable attacks.

A comparable figure (Figure 11) for CIFAR is in the

appendix.

C. Our L∞ Attack

The L∞ distance metric is not fully differentiable and

standard gradient descent does not perform well for it. We

experimented with naively optimizing

minimize c · f(x+ δ) + ‖δ‖∞
However, we found that gradient descent produces very poor

results: the ‖δ‖∞ term only penalizes the largest (in absolute

value) entry in δ and has no impact on any of the other. As

such, gradient descent very quickly becomes stuck oscillating

between two suboptimal solutions. Consider a case where δi =
0.5 and δj = 0.5 − ε. The L∞ norm will only penalize δi,

11Selecting the index i that minimizes δi is simpler, but it yields results
with 1.5× higher L0 distortion.

Target Classification (L∞)

0 1 2 3 4 5 6 7 8 9

S
o

u
rc

e
C

la
ss

ifi
ca

ti
o

n

9
8

7
6

5
4

3
2

1
0

Fig. 5. Our L∞ adversary applied to the MNIST dataset performing a targeted
attack for every source/target pair. Each digit is the first image in the dataset
with that label.

not δj , and ∂
∂δj
‖δ‖∞ will be zero at this point. Thus, the

gradient imposes no penalty for increasing δj , even though it

is already large. On the next iteration we might move to a

position where δj is slightly larger than δi, say δi = 0.5− ε′

and δj = 0.5 + ε′′, a mirror image of where we started. In

other words, gradient descent may oscillate back and forth

across the line δi = δj = 0.5, making it nearly impossible to

make progress.

We resolve this issue using an iterative attack. We replace

the L2 term in the objective function with a penalty for any

terms that exceed τ (initially 1, decreasing in each iteration).

This prevents oscillation, as this loss term penalizes all large

values simultaneously. Specifically, in each iteration we solve

minimize c · f(x+ δ) + ·
∑
i

[
(δi − τ)+

]

After each iteration, if δi < τ for all i, we reduce τ by a factor

of 0.9 and repeat; otherwise, we terminate the search.

Again we must choose a good constant c to use for the

L∞ adversary. We take the same approach as we do for the

L0 attack: initially set c to a very low value and run the L∞
adversary at this c-value. If it fails, we double c and try again,

until it is successful. We abort the search if c exceeds a fixed

threshold.

Using “warm-start” for gradient descent in each iteration,

this algorithm is about as fast as our L2 algorithm (with a

single starting point).

Figure 5 shows the L∞ attack applied to one digit of each

source class, targeting each target class, on the MNSIT dataset.

While most differences are not visually noticeable, a few are.

Again, the worst case is that of a 7 being made to classify as

a 6.

48

Untargeted Average Case Least Likely
mean prob mean prob mean prob

Our L0 48 100% 410 100% 5200 100%
JSMA-Z - 0% - 0% - 0%
JSMA-F - 0% - 0% - 0%

Our L2 0.32 100% 0.96 100% 2.22 100%
Deepfool 0.91 100% - - - -

Our L∞ 0.004 100% 0.006 100% 0.01 100%
FGS 0.004 100% 0.064 2% - 0%
IGS 0.004 100% 0.01 99% 0.03 98%

TABLE V
COMPARISON OF THE THREE VARIANTS OF TARGETED ATTACK TO

PREVIOUS WORK FOR THE INCEPTION V3 MODEL ON IMAGENET. WHEN

SUCCESS RATE IS NOT 100%, THE MEAN IS ONLY OVER SUCCESSES.

A comparable figure (Figure 13) for CIFAR is in the ap-

pendix. No attack is visually distinguishable from the baseline

image.

VII. ATTACK EVALUATION

We compare our targeted attacks to the best results pre-

viously reported in prior publications, for each of the three

distance metrics.

We re-implement Deepfool, fast gradient sign, and iterative

gradient sign. For fast gradient sign, we search over ε to find

the smallest distance that generates an adversarial example;

failures is returned if no ε produces the target class. Our

iterative gradient sign method is similar: we search over ε
(fixing α = 1

256) and return the smallest successful.

For JSMA we use the implementation in CleverHans [35]

with only slight modification (we improve performance by

50× with no impact on accuracy).

JSMA is unable to run on ImageNet due to an inherent

significant computational cost: recall that JSMA performs

search for a pair of pixels p, q that can be changed together

that make the target class more likely and other classes less

likely. ImageNet represents images as 299× 299× 3 vectors,

so searching over all pairs of pixels would require 236 work

on each step of the calculation. If we remove the search over

pairs of pixels, the success of JSMA falls off dramatically. We

therefore report it as failing always on ImageNet.

We report success if the attack produced an adversarial

example with the correct target label, no matter how much

change was required. Failure indicates the case where the

attack was entirely unable to succeed.

We evaluate on the first 1, 000 images in the test set on

CIFAR and MNSIT. On ImageNet, we report on 1, 000 images

that were initially classified correctly by Inception v3 12. On

ImageNet we approximate the best-case and worst-case results

by choosing 100 target classes (10%) at random.

The results are found in Table IV for MNIST and CIFAR,

and Table V for ImageNet. 13

12Otherwise the best-case attack results would appear to succeed extremely
often artificially low due to the relatively low top-1 accuracy

13The complete code to reproduce these tables and figures is available
online at http://nicholas.carlini.com/code/nn robust attacks.

Target Classification

0 1 2 3 4 5 6 7 8 9

D
is

ta
n

ce
M

et
ri

c

L
∞

L
2

L
0

Fig. 6. Targeted attacks for each of the 10 MNIST digits where the starting
image is totally black for each of the three distance metrics.

Target Classification

0 1 2 3 4 5 6 7 8 9

D
is

ta
n

ce
M

et
ri

c

L
∞

L
2

L
0

Fig. 7. Targeted attacks for each of the 10 MNIST digits where the starting
image is totally white for each of the three distance metrics.

For each distance metric, across all three datasets, our

attacks find closer adversarial examples than the previous

state-of-the-art attacks, and our attacks never fail to find an

adversarial example. Our L0 and L2 attacks find adversarial

examples with 2× to 10× lower distortion than the best pre-

viously published attacks, and succeed with 100% probability.

Our L∞ attacks are comparable in quality to prior work, but

their success rate is higher. Our L∞ attacks on ImageNet are so

successful that we can change the classification of an image

to any desired label by only flipping the lowest bit of each

pixel, a change that would be impossible to detect visually.

As the learning task becomes increasingly more difficult, the

previous attacks produce worse results, due to the complexity

of the model. In contrast, our attacks perform even better as

the task complexity increases. We have found JSMA is unable

to find targeted L0 adversarial examples on ImageNet, whereas

ours is able to with 100% success.

It is important to realize that the results between models

are not directly comparable. For example, even though a L0

adversary must change 10 times as many pixels to switch an

ImageNet classification compared to a MNIST classification,

ImageNet has 114× as many pixels and so the fraction of
pixels that must change is significantly smaller.

Generating synthetic digits. With our targeted adversary,

we can start from any image we want and find adversarial

examples of each given target. Using this, in Figure 6 we

show the minimum perturbation to an entirely-black image

required to make it classify as each digit, for each of the

distance metrics.

49

Best Case Average Case Worst Case
MNIST CIFAR MNIST CIFAR MNIST CIFAR

mean prob mean prob mean prob mean prob mean prob mean prob

Our L0 8.5 100% 5.9 100% 16 100% 13 100% 33 100% 24 100%
JSMA-Z 20 100% 20 100% 56 100% 58 100% 180 98% 150 100%
JSMA-F 17 100% 25 100% 45 100% 110 100% 100 100% 240 100%

Our L2 1.36 100% 0.17 100% 1.76 100% 0.33 100% 2.60 100% 0.51 100%
Deepfool 2.11 100% 0.85 100% − - − - − - − -

Our L∞ 0.13 100% 0.0092 100% 0.16 100% 0.013 100% 0.23 100% 0.019 100%
Fast Gradient Sign 0.22 100% 0.015 99% 0.26 42% 0.029 51% − 0% 0.34 1%
Iterative Gradient Sign 0.14 100% 0.0078 100% 0.19 100% 0.014 100% 0.26 100% 0.023 100%

TABLE IV
COMPARISON OF THE THREE VARIANTS OF TARGETED ATTACK TO PREVIOUS WORK FOR OUR MNIST AND CIFAR MODELS. WHEN SUCCESS RATE IS

NOT 100%, THE MEAN IS ONLY OVER SUCCESSES.

This experiment was performed for the L0 task previously

[38], however when mounting their attack, “for classes 0, 2,

3 and 5 one can clearly recognize the target digit.” With our

more powerful attacks, none of the digits are recognizable.

Figure 7 performs the same analysis starting from an all-white

image.

Notice that the all-black image requires no change to

become a digit 1 because it is initially classified as a 1, and

the all-white image requires no change to become a 8 because

the initial image is already an 8.

Runtime Analysis. We believe there are two reasons why one

may consider the runtime performance of adversarial example

generation algorithms important: first, to understand if the

performance would be prohibitive for an adversary to actually

mount the attacks, and second, to be used as an inner loop in

adversarial re-training [11].

Comparing the exact runtime of attacks can be misleading.

For example, we have parallelized the implementation of

our L2 adversary allowing it to run hundreds of attacks

simultaneously on a GPU, increasing performance from 10×
to 100×. However, we did not parallelize our L0 or L∞
attacks. Similarly, our implementation of fast gradient sign

is parallelized, but JSMA is not. We therefore refrain from

giving exact performance numbers because we believe an

unfair comparison is worse than no comparison.

All of our attacks, and all previous attacks, are plenty

efficient to be used by an adversary. No attack takes longer

than a few minutes to run on any given instance.

When compared to L0, our attacks are 2 × −10× slower

than our optimized JSMA algorithm (and significantly faster

than the un-optimized version). Our attacks are typically 10×
−100× slower than previous attacks for L2 and L∞, with

exception of iterative gradient sign which we are 10× slower.

VIII. EVALUATING DEFENSIVE DISTILLATION

Distillation was initially proposed as an approach to reduce

a large model (the teacher) down to a smaller distilled model

[19]. At a high level, distillation works by first training the

teacher model on the training set in a standard manner. Then,

we use the teacher to label each instance in the training set with

soft labels (the output vector from the teacher network). For

example, while the hard label for an image of a hand-written

digit 7 will say it is classified as a seven, the soft labels might

say it has a 80% chance of being a seven and a 20% chance

of being a one. Then, we train the distilled model on the soft

labels from the teacher, rather than on the hard labels from

the training set. Distillation can potentially increase accuracy

on the test set as well as the rate at which the smaller model

learns to predict the hard labels [19], [30].

Defensive distillation uses distillation in order to increase

the robustness of a neural network, but with two significant

changes. First, both the teacher model and the distilled model

are identical in size — defensive distillation does not result

in smaller models. Second, and more importantly, defensive

distillation uses a large distillation temperature (described

below) to force the distilled model to become more confident

in its predictions.

Recall that, the softmax function is the last layer of a neural

network. Defensive distillation modifies the softmax function

to also include a temperature constant T :

softmax(x, T)i =
exi/T∑
j e

xj/T

It is easy to see that softmax(x, T) = softmax(x/T, 1). Intu-

itively, increasing the temperature causes a “softer” maximum,

and decreasing it causes a “harder” maximum. As the limit

of the temperature goes to 0, softmax approaches max; as

the limit goes to infinity, softmax(x) approaches a uniform

distribution.

Defensive distillation proceeds in four steps:

1) Train a network, the teacher network, by setting the

temperature of the softmax to T during the training

phase.

2) Compute soft labels by apply the teacher network to

each instance in the training set, again evaluating the

softmax at temperature T .

3) Train the distilled network (a network with the same

shape as the teacher network) on the soft labels, using

softmax at temperature T .

50

4) Finally, when running the distilled network at test time

(to classify new inputs), use temperature 1.

A. Fragility of existing attacks

We briefly investigate the reason that existing attacks fail

on distilled networks, and find that existing attacks are very

fragile and can easily fail to find adversarial examples even

when they exist.

L-BFGS and Deepfool fail due to the fact that the gradient

of F (·) is zero almost always, which prohibits the use of the

standard objective function.

When we train a distilled network at temperature T and

then test it at temperature 1, we effectively cause the inputs to

the softmax to become larger by a factor of T . By minimizing

the cross entropy during training, the output of the softmax

is forced to be close to 1.0 for the correct class and 0.0 for

all others. Since Z(·) is divided by T , the distilled network

will learn to make the Z(·) values T times larger than they

otherwise would be. (Positive values are forced to become

about T times larger; negative values are multiplied by a

factor of about T and thus become even more negative.)

Experimentally, we verified this fact: the mean value of the

L1 norm of Z(·) (the logits) on the undistilled network is

5.8 with standard deviation 6.4; on the distilled network (with

T = 100), the mean is 482 with standard deviation 457.

Because the values of Z(·) are 100 times larger, when

we test at temperature 1, the output of F becomes ε in all

components except for the output class which has confidence

1−9ε for some very small ε (for tasks with 10 classes). In fact,

in most cases, ε is so small that the 32-bit floating-point value

is rounded to 0. For similar reasons, the gradient is so small

that it becomes 0 when expressed as a 32-bit floating-point

value.

This causes the L-BFGS minimization procedure to fail to

make progress and terminate. If instead we run L-BFGS with

our stable objective function identified earlier, rather than the

objective function lossF,l(·) suggested by Szegedy et al. [46],

L-BFGS does not fail. An alternate approach to fixing the

attack would be to set

F ′(x) = softmax(Z(x)/T)

where T is the distillation temperature chosen. Then mini-

mizing lossF ′,l(·) will not fail, as now the gradients do not

vanish due to floating-point arithmetic rounding. This clearly

demonstrates the fragility of using the loss function as the

objective to minimize.

JSMA-F (whereby we mean the attack uses the output of

the final layer F (·)) fails for the same reason that L-BFGS

fails: the output of the Z(·) layer is very large and so softmax

becomes essentially a hard maximum. This is the version of the

attack that Papernot et al. use to attack defensive distillation

in their paper [39].

JSMA-Z (the attack that uses the logits) fails for a com-

pletely different reason. Recall that in the Z(·) version of

the attack, we use the input to the softmax for computing

the gradient instead of the final output of the network. This

removes any potential issues with the gradient vanishing,

however this introduces new issues. This version of the attack

is introduced by Papernot et al. [38] but it is not used to attack

distillation; we provide here an analysis of why it fails.

Since this attack uses the Z values, it is important to realize

the differences in relative impact. If the smallest input to

the softmax layer is −100, then, after the softmax layer, the

corresponding output becomes practically zero. If this input

changes from −100 to −90, the output will still be practically

zero. However, if the largest input to the softmax layer is 10,

and it changes to 0, this will have a massive impact on the

softmax output.

Relating this to parameters used in their attack, α and β
represent the size of the change at the input to the softmax

layer. It is perhaps surprising that JSMA-Z works on un-

distilled networks, as it treats all changes as being of equal

importance, regardless of how much they change the softmax

output. If changing a single pixel would increase the target

class by 10, but also increase the least likely class by 15, the

attack will not increase that pixel.

Recall that distillation at temperature T causes the value of

the logits to be T times larger. In effect, this magnifies the sub-

optimality noted above as logits that are extremely unlikely but

have slight variation can cause the attack to refuse to make

any changes.

Fast Gradient Sign fails at first for the same reason L-

BFGS fails: the gradients are almost always zero. However,

something interesting happens if we attempt the same division

trick and divide the logits by T before feeding them to the

softmax function: distillation still remains effective [36]. We

are unable to explain this phenomenon.

B. Applying Our Attacks

When we apply our attacks to defensively distilled net-

works, we find distillation provides only marginal value. We

re-implement defensive distillation on MNIST and CIFAR-10

as described [39] using the same model we used for our eval-

uation above. We train our distilled model with temperature

T = 100, the value found to be most effective [39].

Table VI shows our attacks when applied to distillation. All

of the previous attacks fail to find adversarial examples. In

contrast, our attack succeeds with 100% success probability

for each of the three distance metrics.

When compared to Table IV, distillation has added almost

no value: our L0 and L2 attacks perform slightly worse, and

our L∞ attack performs approximately equally. All of our

attacks succeed with 100% success.

C. Effect of Temperature

In the original work, increasing the temperature was found

to consistently reduce attack success rate. On MNIST, this

goes from a 91% success rate at T = 1 to a 24% success rate

for T = 5 and finally 0.5% success at T = 100.

51

Best Case Average Case Worst Case
MNIST CIFAR MNIST CIFAR MNIST CIFAR

mean prob mean prob mean prob mean prob mean prob mean prob

Our L0 10 100% 7.4 100% 19 100% 15 100% 36 100% 29 100%

Our L2 1.7 100% 0.36 100% 2.2 100% 0.60 100% 2.9 100% 0.92 100%

Our L∞ 0.14 100% 0.002 100% 0.18 100% 0.023 100% 0.25 100% 0.038 100%

TABLE VI
COMPARISON OF OUR ATTACKS WHEN APPLIED TO DEFENSIVELY DISTILLED NETWORKS. COMPARE TO TABLE IV FOR UNDISTILLED NETWORKS.

●

●

●

●

● ●
● ● ●

●

●
●

●

●

●

●

●
●

●

●
●

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Distillation Temperature

M
ea

n
A

dv
er

sa
ria

l D
is

ta
nc

e

Fig. 8. Mean distance to targeted (with random target) adversarial examples
for different distillation temperatures on MNIST. Temperature is uncorrelated
with mean adversarial example distance.

We re-implement this experiment with our improved attacks

to understand how the choice of temperature impacts robust-

ness. We train models with the temperature varied from t = 1
to t = 100.

When we re-run our implementation of JSMA, we observe

the same effect: attack success rapidly decreases. However,

with our improved L2 attack, we see no effect of temperature

on the mean distance to adversarial examples: the correlation

coefficient is ρ = −0.05. This clearly demonstrates the fact

that increasing the distillation temperature does not increase

the robustness of the neural network, it only causes existing

attacks to fail more often.

D. Transferability

Recent work has shown that an adversarial example for one

model will often transfer to be an adversarial on a different

model, even if they are trained on different sets of training data

[46], [11], and even if they use entirely different algorithms

(i.e., adversarial examples on neural networks transfer to

random forests [37]).

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Value of k

P
ro

ba
bi

lit
y

A
dv

er
sa

ria
l E

xa
m

pl
e

Tr
an

sf
er

s,
 B

as
el

in
e

Untargetted
Targetted

Fig. 9. Probability that adversarial examples transfer from one model to
another, for both targeted (the adversarial class remains the same) and
untargeted (the image is not the correct class).

Therefore, any defense that is able to provide robust-

ness against adversarial examples must somehow break this

transferability property; otherwise, we could run our attack

algorithm on an easy-to-attack model, and then transfer those

adversarial examples to the hard-to-attack model.

Even though defensive distillation is not robust to our

stronger attacks, we demonstrate a second break of distillation

by transferring attacks from a standard model to a defensively

distilled model.

We accomplish this by finding high-confidence adversar-
ial examples, which we define as adversarial examples that

are strongly misclassified by the original model. Instead of

looking for an adversarial example that just barely changes

the classification from the source to the target, we want one

where the target is much more likely than any other label.

Recall the loss function defined earlier for L2 attacks:

f(x′) = max(max{Z(x′)i : i �= t} − Z(x′)t,−κ).
The purpose of the parameter κ is to control the strength of

adversarial examples: the larger κ, the stronger the classifi-

52

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

Value of k

P
ro

ba
bi

lit
y

A
dv

er
sa

ria
l E

xa
m

pl
e

Tr
an

sf
er

s,
 D

is
til

le
d

Untargetted
Targetted

Fig. 10. Probability that adversarial examples transfer from the baseline model
to a model trained with defensive distillation at temperature 100.

cation of the adversarial example. This allows us to generate

high-confidence adversarial examples by increasing κ.

We first investigate if our hypothesis is true that the stronger

the classification on the first model, the more likely it will

transfer. We do this by varying κ from 0 to 40.

Our baseline experiment uses two models trained on MNIST

as described in Section IV, with each model trained on half of

the training data. We find that the transferability success rate

increases linearly from κ = 0 to κ = 20 and then plateaus

at near-100% success for κ ≈ 20, so clearly increasing κ
increases the probability of a successful transferable attack.

We then run this same experiment only instead we train

the second model with defensive distillation, and find that

adversarial examples do transfer. This gives us another at-

tack technique for finding adversarial examples on distilled

networks.

However, interestingly, the transferability success rate be-

tween the unsecured model and the distilled model only

reaches 100% success at κ = 40, in comparison to the previous

approach that only required κ = 20.

We believe that this approach can be used in general to

evaluate the robustness of defenses, even if the defense is able

to completely block flow of gradients to cause our gradient-

descent based approaches from succeeding.

IX. CONCLUSION

The existence of adversarial examples limits the areas in

which deep learning can be applied. It is an open problem

to construct defenses that are robust to adversarial examples.

In an attempt to solve this problem, defensive distillation

was proposed as a general-purpose procedure to increase the

robustness of an arbitrary neural network.

In this paper, we propose powerful attacks that defeat

defensive distillation, demonstrating that our attacks more

generally can be used to evaluate the efficacy of potential

defenses. By systematically evaluating many possible attack

approaches, we settle on one that can consistently find better

adversarial examples than all existing approaches. We use this

evaluation as the basis of our three L0, L2, and L∞ attacks.

We encourage those who create defenses to perform the two

evaluation approaches we use in this paper:

• Use a powerful attack (such as the ones proposed in this

paper) to evaluate the robustness of the secured model

directly. Since a defense that prevents our L2 attack will

prevent our other attacks, defenders should make sure to

establish robustness against the L2 distance metric.

• Demonstrate that transferability fails by constructing

high-confidence adversarial examples on a unsecured

model and showing they fail to transfer to the secured

model.

ACKNOWLEDGEMENTS

We would like to thank Nicolas Papernot discussing our

defensive distillation implementation, and the anonymous re-

viewers for their helpful feedback. This work was supported

by Intel through the ISTC for Secure Computing, Qualcomm,

Cisco, the AFOSR under MURI award FA9550-12-1-0040,

and the Hewlett Foundation through the Center for Long-Term

Cybersecurity.

REFERENCES

[1] ANDOR, D., ALBERTI, C., WEISS, D., SEVERYN, A., PRESTA, A.,
GANCHEV, K., PETROV, S., AND COLLINS, M. Globally normalized
transition-based neural networks. arXiv preprint arXiv:1603.06042
(2016).

[2] BASTANI, O., IOANNOU, Y., LAMPROPOULOS, L., VYTINIOTIS, D.,
NORI, A., AND CRIMINISI, A. Measuring neural net robustness with
constraints. arXiv preprint arXiv:1605.07262 (2016).

[3] BOJARSKI, M., DEL TESTA, D., DWORAKOWSKI, D., FIRNER, B.,
FLEPP, B., GOYAL, P., JACKEL, L. D., MONFORT, M., MULLER, U.,
ZHANG, J., ET AL. End to end learning for self-driving cars. arXiv
preprint arXiv:1604.07316 (2016).

[4] BOURZAC, K. Bringing big neural networks to
self-driving cars, smartphones, and drones. http:
//spectrum.ieee.org/computing/embedded-systems/
bringing-big-neural-networks-to-selfdriving-cars-smartphones-and-drones,
2016.

[5] CARLINI, N., MISHRA, P., VAIDYA, T., ZHANG, Y., SHERR, M.,
SHIELDS, C., WAGNER, D., AND ZHOU, W. Hidden voice commands.
In 25th USENIX Security Symposium (USENIX Security 16), Austin, TX
(2016).

[6] CHANDOLA, V., BANERJEE, A., AND KUMAR, V. Anomaly detection:
A survey. ACM computing surveys (CSUR) 41, 3 (2009), 15.

[7] CLEVERT, D.-A., UNTERTHINER, T., AND HOCHREITER, S. Fast and
accurate deep network learning by exponential linear units (ELUs).
arXiv preprint arXiv:1511.07289 (2015).

[8] DAHL, G. E., STOKES, J. W., DENG, L., AND YU, D. Large-scale
malware classification using random projections and neural networks. In
2013 IEEE International Conference on Acoustics, Speech and Signal
Processing (2013), IEEE, pp. 3422–3426.

[9] DENG, J., DONG, W., SOCHER, R., LI, L.-J., LI, K., AND FEI-FEI,
L. Imagenet: A large-scale hierarchical image database. In Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on (2009), IEEE, pp. 248–255.

53

[10] GIUSTI, A., GUZZI, J., CIREŞAN, D. C., HE, F.-L., RODRÍGUEZ,
J. P., FONTANA, F., FAESSLER, M., FORSTER, C., SCHMIDHUBER, J.,
DI CARO, G., ET AL. A machine learning approach to visual perception
of forest trails for mobile robots. IEEE Robotics and Automation Letters
1, 2 (2016), 661–667.

[11] GOODFELLOW, I. J., SHLENS, J., AND SZEGEDY, C. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572
(2014).

[12] GRAHAM, B. Fractional max-pooling. arXiv preprint arXiv:1412.6071
(2014).

[13] GRAVES, A., MOHAMED, A.-R., AND HINTON, G. Speech recognition
with deep recurrent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal processing (2013), IEEE,
pp. 6645–6649.

[14] GROSSE, K., PAPERNOT, N., MANOHARAN, P., BACKES, M., AND

MCDANIEL, P. Adversarial perturbations against deep neural networks
for malware classification. arXiv preprint arXiv:1606.04435 (2016).

[15] GU, S., AND RIGAZIO, L. Towards deep neural network architectures
robust to adversarial examples. arXiv preprint arXiv:1412.5068 (2014).

[16] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2016), pp. 770–778.

[17] HINTON, G., DENG, L., YU, D., DAHL, G., RAHMAN MOHAMED, A.,
JAITLY, N., SENIOR, A., VANHOUCKE, V., NGUYEN, P., SAINATH, T.,
AND KINGSBURY, B. Deep neural networks for acoustic modeling in
speech recognition. Signal Processing Magazine (2012).

[18] HINTON, G., DENG, L., YU, D., DAHL, G. E., MOHAMED, A.-R.,
JAITLY, N., SENIOR, A., VANHOUCKE, V., NGUYEN, P., SAINATH,
T. N., ET AL. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal
Processing Magazine 29, 6 (2012), 82–97.

[19] HINTON, G., VINYALS, O., AND DEAN, J. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[20] HUANG, R., XU, B., SCHUURMANS, D., AND SZEPESVÁRI, C. Learn-
ing with a strong adversary. CoRR, abs/1511.03034 (2015).

[21] HUANG, X., KWIATKOWSKA, M., WANG, S., AND WU, M. Safety
verification of deep neural networks. arXiv preprint arXiv:1610.06940
(2016).

[22] JANGLOVÁ, D. Neural networks in mobile robot motion. Cutting Edge
Robotics 1, 1 (2005), 243.

[23] KINGMA, D., AND BA, J. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

[24] KRIZHEVSKY, A., AND HINTON, G. Learning multiple layers of
features from tiny images.

[25] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. ImageNet
classification with deep convolutional neural networks. In Advances
in neural information processing systems (2012), pp. 1097–1105.

[26] KURAKIN, A., GOODFELLOW, I., AND BENGIO, S. Adversarial exam-
ples in the physical world. arXiv preprint arXiv:1607.02533 (2016).

[27] LECUN, Y., BOTTOU, L., BENGIO, Y., AND HAFFNER, P. Gradient-
based learning applied to document recognition. Proceedings of the
IEEE 86, 11 (1998), 2278–2324.

[28] LECUN, Y., CORTES, C., AND BURGES, C. J. The mnist database of
handwritten digits, 1998.

[29] MAAS, A. L., HANNUN, A. Y., AND NG, A. Y. Rectifier nonlinearities
improve neural network acoustic models. In Proc. ICML (2013), vol. 30.

[30] MELICHER, W., UR, B., SEGRETI, S. M., KOMANDURI, S., BAUER,
L., CHRISTIN, N., AND CRANOR, L. F. Fast, lean and accurate:
Modeling password guessability using neural networks. In Proceedings
of USENIX Security (2016).

[31] MISHKIN, D., AND MATAS, J. All you need is a good init. arXiv
preprint arXiv:1511.06422 (2015).

[32] MNIH, V., KAVUKCUOGLU, K., SILVER, D., GRAVES, A.,
ANTONOGLOU, I., WIERSTRA, D., AND RIEDMILLER, M. Playing
Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602
(2013).

[33] MNIH, V., KAVUKCUOGLU, K., SILVER, D., RUSU, A. A., VENESS,
J., BELLEMARE, M. G., GRAVES, A., RIEDMILLER, M., FIDJELAND,
A. K., OSTROVSKI, G., ET AL. Human-level control through deep
reinforcement learning. Nature 518, 7540 (2015), 529–533.

[34] MOOSAVI-DEZFOOLI, S.-M., FAWZI, A., AND FROSSARD, P. Deep-
fool: a simple and accurate method to fool deep neural networks. arXiv
preprint arXiv:1511.04599 (2015).

[35] PAPERNOT, N., GOODFELLOW, I., SHEATSLEY, R., FEINMAN, R., AND

MCDANIEL, P. cleverhans v1.0.0: an adversarial machine learning
library. arXiv preprint arXiv:1610.00768 (2016).

[36] PAPERNOT, N., AND MCDANIEL, P. On the effectiveness of defensive
distillation. arXiv preprint arXiv:1607.05113 (2016).

[37] PAPERNOT, N., MCDANIEL, P., AND GOODFELLOW, I. Transferabil-
ity in machine learning: from phenomena to black-box attacks using
adversarial samples. arXiv preprint arXiv:1605.07277 (2016).

[38] PAPERNOT, N., MCDANIEL, P., JHA, S., FREDRIKSON, M., CELIK,
Z. B., AND SWAMI, A. The limitations of deep learning in adversarial
settings. In 2016 IEEE European Symposium on Security and Privacy
(EuroS&P) (2016), IEEE, pp. 372–387.

[39] PAPERNOT, N., MCDANIEL, P., WU, X., JHA, S., AND SWAMI, A.
Distillation as a defense to adversarial perturbations against deep neural
networks. IEEE Symposium on Security and Privacy (2016).

[40] PASCANU, R., STOKES, J. W., SANOSSIAN, H., MARINESCU, M.,
AND THOMAS, A. Malware classification with recurrent networks. In
2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2015), IEEE, pp. 1916–1920.

[41] RUSSAKOVSKY, O., DENG, J., SU, H., KRAUSE, J., SATHEESH, S.,
MA, S., HUANG, Z., KARPATHY, A., KHOSLA, A., BERNSTEIN, M.,
BERG, A. C., AND FEI-FEI, L. ImageNet Large Scale Visual Recogni-
tion Challenge. International Journal of Computer Vision (IJCV) 115,
3 (2015), 211–252.

[42] SHAHAM, U., YAMADA, Y., AND NEGAHBAN, S. Understanding
adversarial training: Increasing local stability of neural nets through
robust optimization. arXiv preprint arXiv:1511.05432 (2015).

[43] SILVER, D., HUANG, A., MADDISON, C. J., GUEZ, A., SIFRE, L.,
VAN DEN DRIESSCHE, G., SCHRITTWIESER, J., ANTONOGLOU, I.,
PANNEERSHELVAM, V., LANCTOT, M., ET AL. Mastering the game
of Go with deep neural networks and tree search. Nature 529, 7587
(2016), 484–489.

[44] SPRINGENBERG, J. T., DOSOVITSKIY, A., BROX, T., AND RIED-
MILLER, M. Striving for simplicity: The all convolutional net. arXiv
preprint arXiv:1412.6806 (2014).

[45] SZEGEDY, C., VANHOUCKE, V., IOFFE, S., SHLENS, J., AND WOJNA,
Z. Rethinking the Inception architecture for computer vision. arXiv
preprint arXiv:1512.00567 (2015).

[46] SZEGEDY, C., ZAREMBA, W., SUTSKEVER, I., BRUNA, J., ERHAN,
D., GOODFELLOW, I., AND FERGUS, R. Intriguing properties of neural
networks. ICLR (2013).

[47] WARDE-FARLEY, D., AND GOODFELLOW, I. Adversarial perturbations
of deep neural networks. Advanced Structured Prediction, T. Hazan, G.
Papandreou, and D. Tarlow, Eds (2016).

[48] YUAN, Z., LU, Y., WANG, Z., AND XUE, Y. Droid-sec: Deep learning
in android malware detection. In ACM SIGCOMM Computer Commu-
nication Review (2014), vol. 44, ACM, pp. 371–372.

APPENDIX

54

Target Classification (L0)

0 1 2 3 4 5 6 7 8 9

S
o

u
rc

e
C

la
ss

ifi
ca

ti
o

n

0
1

2
3

4
5

6
7

8
9

Fig. 11. Our L0 adversary applied to the CIFAR dataset performing a targeted attack for every source/target pair. Each image is the first image in the dataset
with that label.

55

Target Classification (L2)

0 1 2 3 4 5 6 7 8 9

S
o

u
rc

e
C

la
ss

ifi
ca

ti
o

n

0
1

2
3

4
5

6
7

8
9

Fig. 12. Our L2 adversary applied to the CIFAR dataset performing a targeted attack for every source/target pair. Each image is the first image in the dataset
with that label.

56

Target Classification (L∞)

0 1 2 3 4 5 6 7 8 9

S
o

u
rc

e
C

la
ss

ifi
ca

ti
o

n

0
1

2
3

4
5

6
7

8
9

Fig. 13. Our L∞ adversary applied to the CIFAR dataset performing a targeted attack for every source/target pair. Each image is the first image in the dataset
with that label.

57

